Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13, 460–466 (2019).
Best Research-Cell Efficiency Chart (NREL, accessed 3 January 2019); https://www.nrel.gov/pv/cell-efficiency.html.
Hörantner, M. T. et al. The potential of multijunction perovskite solar cells. ACS Energy Lett. 2, 2506–2513 (2017).
Tennyson, E. M., Doherty, T. A. S. & Stranks, S. D. Heterogeneity at multiple length scales in halide perovskite semiconductors. Nat. Rev. Mater. 4, 573–587 (2019).
Yin, W.-J., Shi, T. & Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014).
de Quilettes, D. W. et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348, 683–686 (2015).
Knight, A. J. et al. Electronic traps and phase segregation in lead mixed-halide perovskite. ACS Energy Lett. 4, 75–84 (2019).
Jones, T. W. et al. Lattice strain causes non-radiative losses in halide perovskites. Energy Environ. Sci. 12, 596–606 (2019).
Zhao, J. et al. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Sci. Adv. 3, eaao5616 (2017).
Man, M. K. L. et al. Imaging the motion of electrons across semiconductor heterojunctions. Nat. Nanotechnol. 12, 36–40 (2017).
Wong, E. L. et al. Pulling apart photoexcited electrons by photoinducing an in-plane surface electric field. Sci. Adv. 4, eaat9722 (2018).
Saliba, M. et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997 (2016).
Wu, X. et al. Trap states in lead iodide perovskites. J. Am. Chem. Soc. 137, 2089–2096 (2015).
Kollár, M. et al. Clean, cleaved surfaces of the photovoltaic perovskite. Sci. Rep. 7, 695 (2017).
Nguyen-Truong, H. T. Electron inelastic mean free path at energies below 100 eV. J. Phys. Condens. Matter 29, 215501 (2017).
Seah, M. P. & Dench, W. A. Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1, 2–11 (1979).
Yang, Y. et al. Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films. Nat. Energy 2, 16207 (2017).
Rehman, W. et al. Photovoltaic mixed-cation lead mixed-halide perovskites: links between crystallinity, photo-stability and electronic properties. Energy Environ. Sci. 10, 361–369 (2017).
Chen, S. et al. Atomic scale insights into structure instability and decomposition pathway of methylammonium lead iodide perovskite. Nat. Commun. 9, 4807 (2018).
Stranks, S. D. et al. Recombination kinetics in organic–inorganic perovskites: excitons, free charge, and subgap states. Phys. Rev. Appl. 2, 034007 (2014).
Wetzelaer, G.-J. A. H. et al. Trap-assisted non-radiative recombination in organic–inorganic perovskite solar cells. Adv. Mater. 27, 1837–1841 (2015).
Tian, W. et al. Limiting perovskite solar cell performance by heterogeneous carrier extraction. Angew. Chem. Int. Ed. 55, 13067–13071 (2016).
Frost, J. M., Whalley, L. D. & Walsh, A. Slow cooling of hot polarons in halide perovskite solar cells. ACS Energy Lett. 2, 2647–2652 (2017).
Kirchartz, T., Markvart, T., Rau, U. & Egger, D. A. Impact of small phonon energies on the charge-carrier lifetimes in metal-halide perovskites. J. Phys. Chem. Lett. 9, 939–946 (2018).
Chatterjee, R., Pavlovetc, I. M., Aleshire, K., Hartland, G. V. & Kuno, M. Subdiffraction infrared imaging of mixed cation perovskites: probing local cation heterogeneities. ACS Energy Lett. 3, 469–475 (2018).
Whalley, L. D., Crespo-Otero, R. & Walsh, A. H-center and V-center defects in hybrid halide perovskites. ACS Energy Lett. 2, 2713–2714 (2017).
Li, W., Liu, J., Bai, F.-Q., Zhang, H.-X. & Prezhdo, O. V. Hole trapping by iodine interstitial defects decreases free carrier losses in perovskite solar cells: a time-domain ab initio study. ACS Energy Lett. 2, 1270–1278 (2017).
Motti, S. G. et al. Controlling competing photochemical reactions stabilizes perovskite solar cells. Nat. Photon. 13, 532–539 (2019).
Park, J.-S., Calbo, J., Jung, Y.-K., Whalley, L. D. & Walsh, A. Accumulation of deep traps at grain boundaries in halide perovskites. ACS Energy Lett. 4, 1321–1327 (2019).
Stranks, S. D. Nonradiative losses in metal halide perovskites. ACS Energy Lett. 2, 1515–1525 (2017).
Correa-Baena, J.-P. et al. Homogenized halides and alkali cation segregation in alloyed organic–inorganic perovskites. Science 363, 627–631 (2019).
Stolterfoht, M. et al. Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells. Nat. Energy 3, 847–854 (2018).
Rotermund, F. & Petrov, V. Generation of the fourth harmonic of a femtosecond Ti:sapphire laser. Opt. Lett. 23, 1040–1042 (1998).
Buckanie, N. M. et al. Space charge effects in photoemission electron microscopy using amplified femtosecond laser pulses. J. Phys. Condens. Matter 21, 314003 (2009).
Hüfner, S. Photoelectron Spectroscopy: Principles and Applications (Springer, 2003).
Damascelli, A. Probing the electronic structure of complex systems by ARPES. Phys. Scr. 2004, T109 (2004).
Pan, Y. Y., Hsu, C. H., Huang, L. W., Dou, K. P. & Kaun, C. C. First-principles study on electronic structures of FAPbX3 (X = Cl, Br, I) hybrid perovskites. J. Adv. Nanomater. 1, https://doi.org/10.22606/jan.2016.11004 (2016).
Endres, J. et al. Valence and conduction band densities of states of metal halide perovskites: a combined experimental–theoretical study. J. Phys. Chem. Lett. 7, 2722–2729 (2016).
Shockley, W. & Read, W. T. Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835–842 (1952).
Fukumoto, K., Yamada, Y., Koshihara, S. & Onda, K. Lifetimes of photogenerated electrons on a GaAs surface affected by nanostructural defects. Appl. Phys. Express 8, 101201 (2015).
Rothmann, M. U. et al. Structural and chemical changes to CH3NH3PbI3 induced by electron and gallium ion beams. Adv. Mater. 30, 1800629 (2018).
Johnstone, D. N. et al. pyxem/pyxem: pyxem 0.10.0 (Zenodo, 2019); https://zenodo.org/record/3533653#.XnLPk4gza71.
Satopaa, V., Albrecht, J., Irwin, D. & Raghavan, B. in 2011 31st International Conf. on Distributed Computing Systems Workshops 166–171 (2011); https://doi.org/10.1109/ICDCSW.2011.20.
Martineau, B. H., Johnstone, D. N., van Helvoort, A. T. J., Midgley, P. A. & Eggeman, A. S. Unsupervised machine learning applied to scanning precession electron diffraction data. Adv. Struct. Chem. Imaging 5, 3 (2019).
de la Peña, F. et al. hyperspy/hyperspy v1.4.1 (Zenodo, 2018); https://doi.org/10.5281/zenodo.1469364.
Cacovich, S. et al. Unveiling the chemical composition of halide perovskite films using multivariate statistical analyses. ACS Appl. Energy Mater. 1, 7174–7181 (2018).
Kim, G. Y. et al. Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition. Nat. Mater. 17, 445–449 (2018).