1.
Schödel, R. et al. A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way. Nature 419, 694–696 (2002).
2.
Ghez, A. M. et al. Stellar orbits around the Galactic center black hole. Astrophys. J. 620, 744–757 (2005).
3.
Eckart, A. & Genzel, R. Stellar proper motions in the central 0.1 pc of the Galaxy. Mon. Not. R. Astron. Soc. 284, 576–598 (1997).
4.
Morris, M. & Serabyn, E. The Galactic center environment. Annu. Rev. Astron. Astrophys. 34, 645–701 (1996).
5.
Genzel, R., Eisenhauer, F. & Gillessen, S. The Galactic center massive black hole and nuclear star cluster. Rev. Mod. Phys. 82, 3121–3195 (2010).
6.
Gillessen, S. et al. A gas cloud on its way towards the supermassive black hole at the Galactic Centre. Nature 481, 51–54 (2012).
7.
Eckart, A. et al. Near-infrared proper motions and spectroscopy of infrared excess sources at the Galactic center. Astron. Astrophys. 551, A18 (2013).
8.
Witzel, G. et al. Detection of Galactic center source G2 at 3.8 μm during periapse passage. Astrophys. J. 796, L8 (2014).
9.
Witzel, G. et al. The post-periapsis evolution of Galactic center source G1: the second case of a resolved tidal interaction with a supermassive black hole. Astrophys. J. 847, 80 (2017).
10.
Gillessen, S. et al. Detection of a drag force in G2’s orbit: measuring the density of the accretion flow onto Sgr A* at 1000 Schwarzschild radii. Astrophys. J. 871, 126 (2019).
11.
Do, T. et al. Relativistic redshift of the star S0-2 orbiting the Galactic center supermassive black hole. Science 365, 6454 (2019).
12.
Larkin, J. et al. OSIRIS: a diffraction limited integral field spectrograph for Keck. Proc. SPIE 6269, 62691A (2006).
13.
Wizinowich, P. L. et al. The W. M. Keck Observatory laser guide star adaptive optics system: overview. Publ. Astron. Soc. Pacif. 118, 297–309 (2006).
14.
Lockhart, K. E. et al. Characterizing and improving the data reduction pipeline for the Keck OSIRIS integral field spectrograph. Astron. J. 157, 75 (2019).
15.
Campbell, R., Kjær, K. & Amico, P. 3D visualisation of integral field spectrometer data. ESO Messenger 148, 28–31 (2012).
16.
Bautista, M. A. & Pradhan, A. K. Ionization structure and spectra of iron in gaseous nebulae. Astrophys. J. 492, 650–676 (1998).
17.
Sitarski, B. N. Characterizing Infrared Excess Sources in the Galactic Center with Adaptive Optics. PhD thesis, Univ. California, Los Angeles (2016).
18.
Peißker, F. et al. New bow-shock source with bipolar morphology in the vicinity of Sgr A*. Astron. Astrophys. 624, A97 (2019).
19.
Phifer, K. et al. Keck observations of the Galactic center source G2: gas cloud or star? Astrophys. J. 773, L13 (2013).
20.
Shahzamanian, B. et al. Polarized near-infrared light of the dusty S-cluster object (DSO/G2) at the Galactic center. Astron. Astrophys. 593, A131 (2016).
21.
Paumard, T. et al. The two young star disks in the central parsec of the Galaxy: properties, dynamics, and formation. J. Phys. Conf. Ser. 54, 199–207 (2006).
22.
Do, T. et al. Stellar populations in the central 0.5 pc of the Galaxy. I. A new method for constructing luminosity functions and surface-density profiles. Astrophys. J. 764, 154 (2013).
23.
Lu, J. R. et al. Stellar populations in the central 0.5 pc of the Galaxy. II. The initial mass function. Astrophys. J. 764, 155 (2013).
24.
Pfuhl, O. et al. The Galactic center cloud G2 and its gas streamer. Astrophys. J. 798, 111 (2015).
25.
Prodan, S., Antonini, F. & Perets, H. B. Secular evolution of binaries near massive black holes: formation of compact binaries, merger/collision products and G2-like objects. Astrophys. J. 799, 118 (2015).
26.
Murray-Clay, R. A. & Loeb, A. Disruption of a proto-planetary disc by the black hole at the Milky Way centre. Nat. Commun. 3, 1049 (2012).
27.
Scoville, N. & Burkert, A. The Galactic center cloud G2: young low-mass star with a stellar wind. Astrophys. J. 768, 108 (2013).
28.
Stephan, A. P. et al. Merging binaries in the Galactic center: the eccentric Kozai-Lidov mechanism with stellar evolution. Mon. Not. R. Astron. Soc. 460, 3494–3504 (2016).
29.
Naoz, S. The eccentric Kozai-Lidov effect and its applications. Annu. Rev. Astron. Astrophys. 54, 441–489 (2016).
30.
Stephan, A. P. et al. The fate of binaries in the Galactic center: the mundane and the exotic. Astrophys. J. 878, 58 (2019).
31.
Raghavan, D. et al. A survey of stellar families: multiplicity of solar-type stars. Astrophys. J. Suppl. Ser. 190, 1–42 (2010).
32.
Diolaiti, E. et al. Analysis of isoplanatic high resolution stellar fields by the StarFinder code. Astron. Astrophys. Suppl. Ser. 147, 335–346 (2000).
33.
Boehle, A. et al. An improved distance and mass estimate for Sgr A* from a multistar orbit analysis. Astrophys. J. 830, 17 (2016).
34.
Schödel, R., Najarro, F., Muzic, K. & Eckart, A. Peering through the veil: near-infrared photometry and extinction for the Galactic nuclear star cluster. Astron. Astrophys. 511, A18 (2010).
35.
Lyke, J. et al. OSIRIS Toolbox: OH-Suppressing InfraRed Imaging Spectrograph pipeline. (Code Record ascl:1710.021, Astrophysics Source Code Library, 2017).
36.
Yelda, S. et al. Improving Galactic center astrometry by reducing the effects of geometric distortion. Astrophys. J. 725, 331–352 (2010).
37.
Yelda, S. et al. Properties of the remnant clockwise disk of young stars in the Galactic center. Astrophys. J. 783, 131 (2014).
38.
Feroz, F. & Hobson, M. P. Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses. Mon. Not. R. Astron. Soc. 384, 449–463 (2008).
39.
Feroz, F., Hobson, M. P. & Bridges, M. MULTINEST: an efficient and robust Bayesian inference tool for cosmology and particle physics. Mon. Not. R. Astron. Soc. 398, 1601–1614 (2009).
40.
Lucy, L. B. Mass estimates for visual binaries with incomplete orbits. Astron. Astrophys. 563, A126 (2014).
41.
Kosmo O’Neil, K. et al. Improving orbit estimates for incomplete orbits with a new approach to priors — with applications from black holes to planets. Astron. J. 158, 1 (2019).
42.
Neyman, J. Outline of a theory of statistical estimation based on the classical theory of probability. Phil. Trans. R. Soc. Lond. A 236, 333–380 (1937).
43.
Schartmann, M. et al. 3D adaptive mesh refinement simulations of the gas cloud G2 born within the disks of young stars in the Galactic center. Astrophys. J. 811, 155 (2015).
44.
Yusef-Zadeh, F., Morris, M. & Ekers, R. D. New structures near the compact radio source at the Galactic centre. Nature 348, 45–47 (1990).
45.
Lo, K. Y. & Claussen, M. J. High-resolution observations of ionized gas in central 3 parsecs of the Galaxy — possible evidence for infall. Nature 306, 647–651 (1983).
46.
Becklin, E. E., Gatley, I. & Werner, M. W. Far-infrared observations of Sagittarius A – the luminosity and dust density in the central parsec of the Galaxy. Astrophys. J. 258, 135–142 (1982).
47.
Russell, S. S. et al. in Meteorites and the Early Solar System II (eds Lauretta, D. S. & McSween, H. Y. Jr) 233–251 (Univ. Arizona Press, 2006).
48.
Jalali, B. et al. Star formation in the vicinity of nuclear black holes: young stellar objects close to Sgr A*. Mon. Not. R. Astron. Soc. 444, 1205–1220 (2014).
49.
Yusef-Zadeh, F. et al. Sgr A* and its environment: low-mass star formation, the origin of X-ray gas and collimated outflow. Astrophys. J. 819, 60 (2016).
50.
Tylenda, R., Soker, N. & Szczerba, R. On the progenitor of V838 Monocerotis. Astron. Astrophys. 441, 1099–1109 (2005).
51.
Tylenda, R. & Kamiński, T. Evolution of the stellar-merger red nova V1309 Scorpii: spectral energy distribution analysis. Astron. Astrophys. 592, A134 (2016).
52.
MacLeod, M. et al. Lessons from the onset of a common envelope episode: the remarkable M31 2015 luminous red nova outburst. Astrophys. J. 835, 282 (2017).
53.
Genzel, R. et al. The stellar cusp around the supermassive black hole in the Galactic center. Astrophys. J. 594, 812–832 (2003).
54.
Naoz, S. & Fabrycky, D. C. Mergers and obliquities in stellar triples. Astrophys. J. 793, 137 (2014).
55.
Antonini, F., Faber, J., Gualandris, A. & Merritt, D. Tidal breakup of binary stars at the Galactic center and its consequences. Astrophys. J. 713, 90–104 (2010).
56.
Do, T. et al. Envisioning the next decade of Galactic Center science: a laboratory for the study of the physics and astrophysics of supermassive black holes. Preprint at https://arXiv.org/abs/1903.05293 (2019).
57.
Naoz, S. et al. Confusing binaries: the role of stellar binaries in biasing disk properties in the Galactic center. Astrophys. J. 853, L24 (2018).